

 1

2023 - 2024

KMITL

Project plan
Bangkok, Thailand

Jarne Dirken

Kobe Vandendijck

Sohaib Ibenhajene

 2

Table of contents

1. COMPANY __ 4

2. PROBLEM __ 5

3. OBJECTIVE ___ 6

4. BUSINESS CASE ___ 7

4.1. Added value ___ 7

4.2. Stake holders ___ 7

5. PROJECT TIMELINE ___ 8

5.1. The steps that are going to be taken _________________________________ 8

5.1.1. Initialization phase___ 8

5.1.2. Realization phase ___ 8

6. COMMUNICATION AND RESPONSIBILITIES __________________________ 9

7. PROJECT SCOPE __ 10

8. INSPECTION OF THE CURRENT APPLICATION _______________________ 12

8.1. Register form __ 12

8.2. Login form __ 13

8.3. First impression __ 13

8.4. Borrow page __ 14

8.5. Return page ___ 14

8.6. Borrowing history page ___ 15

8.7. Approve borrow (admin) __ 15

8.8. Report borrow (admin) __ 16

8.9. Repair history (admin) __ 16

8.10. Equipment (admin) __ 17

8.10.1. Add equipment ___ 17

8.10.2. Edit equipment ___ 18

8.11. Location (admin) ___ 18

8.11.1. Add location ___ 19

8.11.2. Edit location ___ 19

8.12. Users (admin) ___ 20

8.12.1. Add user/register page ______________________________________ 20

8.12.2. Password setting __ 21

8.12.3. Edit register ___ 21

 3

8.13. General ___ 22

9. RESEARCH __ 23

9.1. Front-end __ 23

9.2. Javascript VS Typescript __ 23

9.3. Back-end ___ 24

9.4. Database __ 25

9.5. UI 25

9.6. Real time updating __ 26

9.7. Push alerts ___ 26

9.8. Authentication ___ 27

9.9. Infrastructure __ 28

9.9.1. Hosting ___ 28

9.9.2. Containers ___ 29

9.10. Security ___ 29

10. STORYBOARD _______________________________________ 30

10.1. Desktop ___ 30

10.1.1. General: __ 30

10.1.2. Student login: __ 32

10.1.3. Supervisor login: __ 35

10.1.4. Admin login: ___ 42

10.2. Mobile __ 46

10.2.1. General: __ 46

10.2.2. Student login: __ 47

10.2.3. Supervisor login: __ 48

10.2.4. Admin login: ___ 50

10.3. Links to screens ___ 52

11. CONCEPTUALIZATION OF THE APPLICATION __________________ 52

11.1. Use case diagram __ 52

11.2. Datamodel ___ 54

11.3. General ___ 54

12. REFERENCES _______________________________________ 55

 4

1. Company

KMITL or King Mongkut's Institute of Technology Ladkrabang is a university

located in Ladkrabang, Bangkok, Thailand.

There are two other universities called the King Mongkut’s Institute of Technology

Thonburi, and King Mongkut’s Institute of Technology North Bangkok. This

organization is dedicated to the exploration, analysis, enhancement, and

provision of services in technology, science, and technical education. Its mission

also encompasses the preservation and promotion of the nation's art and culture.

The school counts more than 20,000 students in all major and educational levels.

(kmitl, n.d.)

KMITL comprises 11 distinct schools, which are:

1. School of Engineering

2. School of Architecture, Art, and Design

3. School of Science

4. School of Agricultural Technology

5. School of Industrial Education and Technology

6. School of Food Industry

7. School of Information Technology

8. KMITL Business School

9. School of Liberal Arts

10. Faculty of Medicine

11. School of Dentistry

 5

2. Problem

KMITL has a lot of hardware components that students can borrow if they want

to. That’s why the school decided to make an inventory managing system. This

way students can borrow items, return them and everything can be monitored by

the application so no components should get lost.

However, the existing system, while effective in its primary goal, exhibits several

limitations that require attention. Our task is to address these shortcomings to

enhance the system's functionality and user experience. The identified issues

include:

• The problem is that the current system doesn’t have a good authentication

system. Users can just create an account with whatever student number,

email, name, etc…

• The absence of an approval process for borrowing items enables individuals to

potentially borrow an entire stock without oversight, leading to potential

abuse and inventory management challenges.

• The system's design is not fully optimized for mobile devices.

• The organization of the inventory table falls short of expectations, making it

difficult for users to navigate and locate specific items efficiently.

• The overall design of the system is overly simplistic, which, while minimalistic,

may not engage users effectively or provide an intuitive user interface.

• User-friendliness is compromised, indicating that navigating the system and

performing actions like borrowing or returning items could be more intuitive

and less cumbersome for users.

Our involvement will focus on developing solutions to these issues, aiming to

create a more secure, accessible, and user-friendly system that meets the needs

of both the institution and its students. By addressing these challenges, we will

ensure that the inventory management system not only functions effectively but

also enhance the user experience for all stakeholders involved.

 6

3. Objective

Dealing with borrowing components at university can really be a headache for

students. University staff don't enjoy chasing after items they've lent to students

either. We're spending our internship trying to fix this problem.

Our plan is to make a web application specifically for KMITL students and staff.

It's going to be very straightforward and easy for everyone to use, but it will also

have plenty of useful features. This web app is all about making sure students

and staff can work together smoothly, so nobody must wonder where something

is or who has borrowed it.

For building this app, we're using Next.js as our main technology and PostgreSQL

for handling all the data. We want to make this app a lot better than the current

one. Some new things we're adding include a system where staff can approve

loans easily and a feature for checking items in and out with QR codes. The

webserver should run on a local server in KMITL itself that we have access to. We

have to keep in mind that the system will be used by a minimum of 600 students

so security, performance and scalability will be key factors in our project.

With these updates, borrowing components at the university will become a whole

lot easier and more organized.

 7

4. Business case

4.1. Added value

Our project will offer significant value propositions with broad-reaching benefits.

We stand to enhance the current borrowing system with the help of new

technology and features.

With the help of our project, we reduce the risk of lost or stolen items through

better tracking, monitoring, and authentication. Furthermore, we will be

facilitating a smoother borrowing experience, saving time and reducing

frustration for both students and staff. We mustn’t forget to make our solution

scalable that meets the growing needs of the KMITL community.

4.2. Stake holders

KMITL Staff: Our primary stakeholder is the staff of KMITL. They will benefit

from improved inventory management, better clarity and role management.

KMITL Students: Students will benefit from this system by having a better user

experience while borrowing or returning an item.

 8

5. Project timeline

5.1. The steps that are going to be taken

Our project consists of two phases. The initialization phase and the realization

phase.

5.1.1. Initialization phase

In this phase we will be focusing on our project plan (this document). This phase

consists of research only. These are the steps we are going to take:

1. Talk to someone who uses or knows the current system and ask for an

opinion.

2. Inspect the current system and try to look for improvements.

3. Research the tools we are going to use for the new system.

4. Make the screens in Figma.

The initialization phase should only last 3 weeks. 4/03 – 24/03

5.1.2. Realization phase

In this phase of our project, we will be developing a new system. We have done

all the research so now it’s time to put it into practice. These are the steps we

are going to take:

1. Make a basic front-end and back-end with dummy data and make sure

they can communicate with each other with the help of an API.

2. Improve the application so it looks like our Figma board with all the

requirements.

3. Make everything work as needed, remove bugs and put in some real data.

The realization phase should last all the other weeks (10): 25/03 – 24/05

 9

6. Communication and responsibilities

Our supervisors will check up on us every week. If they don’t have time to check

up on us, they will send over a senior student who uses the current system and

he will look at what we have done and report everything back to the supervisors.

Because we will be working on a web application, we can host the website and

present it live. They can follow up our work remotely by looking at the website.

Kobe will be doing all the infrastructure and security of this website. He will set

up a self hosted GitLab server and secure the pipeline with SAST,DAST and WAF.

For hosting the website he will use the things already in place from the old

website. He will reuse the SSL/TLS certificates and the API calls will be secured

with API keys.

Because we will be working with two full stack developers on this project we are

going to divide the work. Jarne will mainly work on the student and the login

pages. Sohaib will mainly work on the supervisor pages. We’ll both be developing

the admin pages as well as any extra features that should be included such as

alerting, shopping cart, …

 10

7. Project scope

Here our MoSCoW of the project.

The MoSCoW method is a prioritization tool in project management, dividing

tasks into:

• Must have (M): Essential for success.

• Should have (S): Important but not critical.

• Could have (C): Nice to have, if possible.

• Won’t have (W): Not included in this phase.

This helps focus on what's crucial for the project's outcome.

 ust have: - Web application

- Managing inventory

- Borrowing items

- Returning items

- Approval based borrowing & returning

- Creating account

- QR code generating

- Transaction history

- Repair history

- Basic infrastructure

- TLS/SSL certificates

- API keys

- Domain name

 hould have: - Item’s transaction history

 - User transaction history

 - Responsive to fit mobile screens

 - Account summary

- Add push notification 4 conditions: loan, return,

almost expired(StSV), expired (StSV)

- Filter on specific attributes

- Urgent borrowing process

- Excel import

- Improve repair flow- icon addition: expired

- Backups (snapshots vSphere)

- Advanced borrow system

- Multi loan / delete

 11

 ould have:

- Export item history

- Export user history

- Export repair history

- Advance booking features (reserve item)

- Add message when returning borrow

- Supervisor / admin change borrow status

- Add message on repair item

Repair history in item history

- Log of all activities (admin only)

- Low stock option alert

- Automatic number appending

 on’t have:

- Mobile application

 - Any AI driven features

 - Any analytics

 - Importing all old data

 - Placing QR code on all hardware components

 12

8. Inspection of the current application

8.1. Register form

When we first saw the application, we had to register to use the application. The

first thing we noticed is that we can just enter anything anywhere. Meaning if we

want to fill in “1” everywhere, we can. There is no validation, which is not good.

Also, we can see that there is no “back” button. If we accidentally click on

“register”, there is no way for the user to go back.

 13

8.2. Login form

When filling in nothing and pressing “login” you don’t see any error messages.

This is not user friendly. Only when you type something and try to log in, you can

see an error message (in Thai, so not in the language of the browser).

Additionally, we are concerned that this system, with its custom registration page

storing data in a local database without adequate verification, coupled with a

login page that fails to validate input values properly, could pose a significant

security risk.

8.3. First impression

That is what the landing page looks like when you first login, there is a lot going

on. On the left side is the navigation bar with all the pages, and the rest of the

page is a view of the database with all the available items. The navigation bar

looks very good and user friendly, it is simple and easy to use and folds in if you

want it to. The main part also has a search function, where you can search for

anything by name, no brand or model. We noticed that if there are multiple items

that are the same, they all show up on this screen. The last thing we noticed is

that the database is not shown in full on the page, on the bottom there is a slider

for showing the rest. These last 2 things make the first page a bit overwhelming

and confusing.

 14

8.4. Borrow page

The borrow page still has the clean navigation bar. The rest of the page looks

good as well, and it is easy to use. The best part of the page is that it fills in the

date automatically, so you don’t have to go look for it. There is also a button that

sends you back to the home page. The only thing on this page that bothered us

is that the search bar gives you again all the items with the same name, and that

makes it a bit chaotic.

8.5. Return page

On this page is shown what you have borrowed from the university that you have

not brought back yet. We like this concept very much, as well as the add borrow

button that send you to the borrow page.

 15

8.6. Borrowing history page

The borrow history page shows you everything you have borrowed in the past

and have brought back. This is also a nice addition to the inventory system.

8.7. Approve borrow (admin)

Now let’s look at the website from an administrator perspective. The first pages

stay the same as before, but certain pages have been added. Starting with

Approve borrow, on this page there is a list shown of all the request to borrow

something as well as all the requests to return something. This would be quite

chaotic if the system was in full use and there were more requests. For each

request there is a button to approve or reject the request and each button

triggers a notification pop-up.

 16

8.8. Report borrow (admin)

This page is very good, you can filter on dates, so that you don’t have too many

entry’s. You can also export as pdf with a button for printing out as well as a

search bar and the sorting is handy on this kind of page.

8.9. Repair history (admin)

This is also quite a good and clear page, the few columns make it an easy to

understand page without confusion. Maybe adding a date filtering would be good

if the application was bigger and more items were being used.

 17

8.10. Equipment (admin)

This page displays all the equipment that can be borrowed from the university.

This also gives the administrator some options, you can add, edit or delete the

items. Different to the search and borrow pages where every single item is

shown, what we do not like. On this page it is actually really helpful to have.

There is also a button on the screen that allows you to print out the QR-codes.

8.10.1. Add equipment

The “add” button on the equipment page leads you to another page. On this

page you can choose to add an item to the list. Here you can enter its basic

information, as well as a picture. The bad thing we noticed here is that the only

required field is the location, this enables people to add empty items to the list.

 18

8.10.2. Edit equipment

If you push the edit button you go back to the add equipment page, with the

only difference being that the known information is filled out in the form and the

title is different.

8.11. Location (admin)

This page is again quite good, it shows all the locations where there is storage

for equipment. On this page you can add, edit or delete locations. You can again

search for one as well. On this page we noticed that if you have less entry’s than

the amount specified on the top, the button for going to another page jumps with

it to the top, staying just underneath the last piece of data.

 19

8.11.1. Add location

On this page you can enter a new location, otherwise it is empty. There is no

basic format in which a location can be entered. This could be done in order to

make sure that no one can just enter anything.

8.11.2. Edit location

On this page you can edit the location data, it is again empty other than the one

form element.

 20

8.12. Users (admin)

On this page we can see all the registered users of our web application, you can

see basic information as well as level clearance and status. You also have a

couple of buttons that you can use: add user, password, edit and delete.

8.12.1. Add user/register page

If you click on add user, you are sent to a page called register. On this page you

can add basic information of a user, as well as set the role they have and the

status of the account. You can not enter a password on this page so that is some

extra work you will have to put in to create a user.

 21

8.12.2. Password setting

This page only contains a form that lets you add and confirm a password of the

user you have selected. You can change the password of a known user as well, it

does not matter what role they have. The users don’t even get a message to let

them know their password has been changed. This could be a severe security

breach if someone ever got in. You could even change an admin password if you

wanted to.

8.12.3. Edit register

This page allows you to edit the basic information of a user, you can take

away/give admin rights to/from the users. You can also change the status of an

account to closed.

 22

8.13. General

To give a general overview of the current application. It looks good and is very

fast. There are things that should be fixed like a user profile page. The f11

button is kind off useless. The sidebar isn’t properly aligned. The table is too big

and doesn’t look good on mobile. There is no option to filter on multiple criteria.

Also, we think it might be best to combine the return and history page together

into one page. This could make it easier to understand.

The security also lacks some things that we will need to change on our own

application. And we think that merging some of the extra pages (i.e. add, edit)

would be beneficial as well.

Overall, a good start but it feels like a half-finished product. We will do our best

to implement everything they asked for so that the new system is everything

they need, and they can step away from the google forms.

 23

9. Research

9.1. Front-end

Next.js is widely acclaimed for its exceptional capabilities in

the development of modern web applications, especially as a

frontend framework. Utilizing React, it offers an enhanced

experience for building user interfaces, incorporating server-

side rendering (SSR), static site generation (SSG), and client-side rendering

methods to optimize performance and user experience across the web.

Next.js includes automatic image optimization with the next/image component,

which serves optimized images in the formats supported by modern browsers,

resizing images on demand. This feature significantly improves loading times and

performance by reducing the size of images without compromising quality.

Built-in internationalization (i18n) support in Next.js allows for the creation of

multi-language web applications with ease. It provides automatic language

detection, URL routing, and efficient loading of localized content, making it

simpler to develop global applications. Which would be very helpful here so we

can just detect the language of the browser and give the error messages in that

language.

9.2. Javascript VS Typescript

For next.js we can choose whether we want to build our app with JavaScript or

typescript. So, which one is better? Well, they both have their pros and cons.

JavaScript is easier to learn and more forgiving but that also means it’s more

prone to errors and really difficult to scale for larger projects. Typescript on the

other hand is a superset of JavaScript so all valid JavaScript code will also work

in typescript but the extra features that It’s less forgiving so it can catch errors

faster.

Ultimately, the best language to use to build Next.js applications is the one that

you are most comfortable with and that best meets the needs of your project. If

you are new to programming, I recommend starting with JavaScript. Once you

have a good understanding of JavaScript, you can then decide if you want to

learn TypeScript. In case you like to build production level projects with huge

code base without a doubt typescript will be the best option for you. (Salman,

2023)

Next.js is built with TypeScript under the hood, so you get better IntelliSense and

type definitions in your editor by default with just JavaScript. But when you

couple that with TypeScript, you can get an even better developer experience —

including instant feedback when your component expects props, but you didn’t

pass any. Well, this is something most IDEs understand even if you don’t use

 24

TypeScript. But as you work with Next.js, you will build many components with

optional props, as well as many utility functions which can be enhanced with

TypeScript for better bug spotting, documentation, IntelliSense.

You’re also able to build with Next’s exported types and define your own to build

with across your applications. These types help give your code better structure

by dictating what your objects, arrays, etc., look like ahead of time. That way,

you, your code editor, and any developer after you knows how to reference your

code. (Chaudhari, 2023)

So, in the end what does it all comes down to? Are we working on a bigger

project, using typescript for more documentation, better bug spotting and better

intellisense. That’s why for this project we are going to use Typescript.

9.3. Back-end

As for our back-end we should also use Next.js. This is

convenient because we don’t need to change languages,

we can just use Next.js for front- and back end.

Here we will write API-calls to our database to show the data on our website.

One of the core features that facilitate Next.js's use as a backend solution is its

API routes. These routes allow you to create RESTful APIs directly within your

Next.js application. By placing any file under the app/api directory, you can

create an endpoint that behaves as an API. This setup simplifies the development

process as you can manage both your frontend and backend code in a single

project, making it easier to develop, test, and deploy your application.

API routes in Next.js are essentially serverless functions that run on demand,

scaling automatically with the number of requests. This serverless approach

reduces the overhead of server management, ensuring that your application can

scale effortlessly without the need to manage infrastructure. It's particularly

beneficial for applications with fluctuating traffic, as it can dynamically allocate

resources to meet demand.

Handling authentication in Next.js apps can be managed through API routes,

utilizing libraries such as NextAuth.js. This library simplifies the implementation

of authentication systems, supporting various authentication providers and

strategies, including email, social login, and JWT tokens. Moreover, Next.js apps

can be secured using standard web security practices, such as secure headers,

HTTPS, and data validation/sanitization to prevent common web vulnerabilities.

 25

9.4. Database

PostgreSQL is a powerful, open-source object-relational

database system known for its robustness, scalability, and

adherence to SQL standards. It has become the go-to

database for a wide range of applications across various

industries, from startups to large enterprises, due to its

advanced features and reliability. PostgreSQL offers a

sophisticated yet practical solution for managing data,

regardless of the complexity or volume, making it an ideal choice for both

traditional and modern, web-facing applications.

Data integrity and reliability are paramount in PostgreSQL, with features such as

atomicity, consistency, isolation, durability (ACID) properties, sophisticated

locking mechanisms, and foreign keys ensuring that the database remains

consistent and robust under various conditions. It also supports savepoints and

point-in-time recovery, enhancing data protection and allowing administrators to

restore data to a specific moment in case of an error or system failure. This is

very useful when working with a lot of data that changes constantly.

In order to create the database and make a

connection with it we are going to use Prisma.io. The

purpose is that Prisma simplifies database access by

providing an easy-to-use API for querying and

managing our database. Prisma is used on the

backend to make sure our database is created with schemas and for data

fetching. Or as Prisma like to say it:

“Prisma makes working with data easy! It offers a type safe Node.js & TypeScript

ORM, global database caching, connection pooling, and real-time database

events.” (Rauch, n.d.)

9.5. UI

For our UI design framework, we are incorporating both

TailwindCSS and MUI to leverage the unique strengths of each.

TailwindCSS has been chosen for its efficient UI construction and

component management. Its performance is notably superior,

outperforming traditional CSS by 48%, as highlighted by Austin in 2023. This

significant improvement makes it an optimal choice for crafting responsive and

visually appealing interfaces with less effort. (Austin, 2023)

MUI complements our design strategy by providing a robust set of

React components. This integration is essential for achieving a

sleek and attractive UI design, facilitating the development of

complex UI features with simplicity and elegance.

 26

By combining TailwindCSS's efficiency and MUI's comprehensive component

library, we aim to create a user interface that is not only beautiful and user-

friendly but also highly performant and scalable. This dual-framework approach

allows us to harness the best of both worlds, ensuring a smooth and responsive

user experience across our application.

9.6. Real time updating

For implementing real-time updates, we're planning to integrate WebSockets into

our system. This technology enables instant communication between the user's

browser and our server, ensuring that whenever a new request hits the database,

the user on our website will receive an immediate notification via a popup.

Using WebSockets might be a bit more sophisticated than other methods for

achieving real-time updates, but I've successfully utilized it in a previous project.

This experience gives me confidence that incorporating it into our current web

application will significantly enhance the user

experience by keeping everyone informed with the

latest updates as they happen.

Another approach might be to use React Querry. I’ve only heard about this

method once and there is not a lot of documentation available, but this might

also be a valid path to achieve the same result. Real Time updating.

9.7. Push alerts

To implement push alerts in our application, we're planning to focus on two main

channels: email and LINE push notifications. There are others but these two

seem to be the two most useful.

For sending email notifications, there are several tools and services we can

utilize. These tools enable us to automate the process of sending out email alerts

whenever specific actions occur within our application, such as new requests or

updates.

For LINE notifications, we'll need to integrate with the LINE Messaging API. This

requires setting up a LINE developer account, creating a LINE bot, and

configuring it to send notifications. With this setup, we can send real-time alerts

directly to a user's LINE app, informing them of new developments or updates

relevant to their interests or actions on our platform.

 27

By leveraging both email and LINE for push notifications, we

aim to offer our users a flexible and efficient way to stay

informed about important events and updates, enhancing their

overall experience with our application.

9.8. Authentication

In evaluating our options for implementing authentication, we've narrowed down

our choices to two primary candidates: Firebase and Auth0.

For our project, customization is a key requirement, especially the ability to

incorporate our own fields for login and registration processes. After careful

consideration, Firebase emerges as the more suitable choice due to its superior

customization capabilities. It allows for the integration of custom user fields

directly within the authentication flow, enabling us to tailor the login and

registration experience to our specific needs. This flexibility extends to using

Firebase's other services, such as Cloud Firestore or Realtime Database, to store

and manage additional user data beyond the standard authentication

parameters.

While Auth0 also offers a high degree of customization and a user-friendly

interface for managing authentication flows, it seems that Firebase provides a

more granular level of control that aligns better with our project's requirements.

This includes the ability to create completely custom user interfaces for

authentication, without the need for redirecting users to external pages, and the

option to handle custom data more seamlessly within our application's

infrastructure.

Moreover, Firebase's integration with other Google Cloud Platform services could

offer additional advantages in terms of scalability, data processing, and analytics,

which may prove beneficial as our project evolves.

In summary, although Auth0 is an exceptional choice with strong features for

managing authentication flows, Firebase's extensive customization options and

seamless integration with custom fields and additional user data make it the

preferred choice for our project's specific needs. This decision is guided by our

priority to deliver a tailored and integrated user experience throughout the

authentication process.

 28

9.9. Infrastructure

Here is what our infrastructure will look like:

The infrastructure for this application will be very simple because does it not

require a big and complicated infrastructure.

The infrastructure for this application will look as the picture above suggests. On

the local server there is a vSphere hypervisor installed, on this hypervisor I will

create a Linux server. On this server I will install docker, and with this I will

create 2 containers, 1 for the Next.js application itself and another for the

PostgreSQL database. This way the application is easily scalable in the future if

that is what the university wants.

9.9.1. Hosting

vSphere is a software suite developed by VMware,

offering virtualization and cloud computing solutions

for businesses. It facilitates the creation,

management, and optimization of virtualized

infrastructure and cloud environments. Key

components include the ESXi Hypervisor, which

partitions physical servers into multiple virtual

machines (VMs); vCenter Server for centralized

management and monitoring; the vSphere Client for

web-based interface access; vSphere High Availability (HA) for automated

failover protection; vSphere Distributed Resource Scheduler (DRS) for workload

balancing; and vSphere Storage, providing virtualized storage solutions. Overall,

vSphere simplifies the management and optimization of IT resources, granting

businesses increased flexibility, scalability, and efficiency in their operations.

 29

9.9.2. Containers

 Docker is a widely used platform for

developing, shipping, and running

applications within containers. Containers

are lightweight, portable, and isolated

environments that bundle an application

with its dependencies. Docker simplifies

the process of creating, deploying, and

managing containers through its core components: Docker Engine, Dockerfile,

Docker Image, Docker Container, Docker Hub, and Docker Compose. It allows

developers to package applications into portable units called Docker images,

which can be easily shared and run on any platform that supports Docker. Docker

has significantly impacted software development by providing a standardized and

efficient way to package, distribute, and run applications across different

environments.

9.10. Security

How the security measures will be implemented is mentioned in detail in the

other file (Project_Plan_Security.dockx).

In simple terms the CCS student will play the role of an evil developer on the

developer platform. He will clone the repository weekly and check for

weaknesses on the platform while also trying to exploit the application. The

information gotten from this will be used to secure the application.

 30

10. Storyboard

10.1. Desktop

10.1.1. General:

 31

 32

10.1.2. Student login:

 33

 34

 35

10.1.3. Supervisor login:

 36

 37

 38

 39

 40

 41

 42

10.1.4. Admin login:

 43

 44

 45

 46

10.2. Mobile

10.2.1. General:

 47

10.2.2. Student login:

 48

10.2.3. Supervisor login:

 49

 50

10.2.4. Admin login:

 51

 52

10.3. Links to screens

Pc: https://www.figma.com/file/rAbnROflHkCGDIqVOcOKpa/Inventory-system-

desktop?type=design&mode=design&t=vOCWCuKTRJqVi1gD-1

Mobile: https://www.figma.com/file/acxboRAx3vkOi3YaA4kCX8/Inventory-system-

mobile?type=design&mode=design&t=vOCWCuKTRJqVi1gD-1

11. Conceptualization of the Application

11.1. Deliverables

We discussed that at the end we must give a project handover. This will be two

different files. One for the user on how to navigate and use the application and

the other for developers to understand the code and the tools we used. Basically

two manuals as project handover including our code.

11.2. Use case diagram

First, we will discuss our use case diagram. This is a visual representation of

everything that a user should be able to do within our application.

Here you can see we have an actor called “user”. This can be a student or

lecturer. We also have an actor called “supervisor”, he can do everything a user

can and more. As last we have an actor called “admin”, he can do everything a

user and a supervisor can and more.

https://www.figma.com/file/rAbnROflHkCGDIqVOcOKpa/Inventory-system-desktop?type=design&mode=design&t=vOCWCuKTRJqVi1gD-1
https://www.figma.com/file/rAbnROflHkCGDIqVOcOKpa/Inventory-system-desktop?type=design&mode=design&t=vOCWCuKTRJqVi1gD-1
https://www.figma.com/file/acxboRAx3vkOi3YaA4kCX8/Inventory-system-mobile?type=design&mode=design&t=vOCWCuKTRJqVi1gD-1
https://www.figma.com/file/acxboRAx3vkOi3YaA4kCX8/Inventory-system-mobile?type=design&mode=design&t=vOCWCuKTRJqVi1gD-1

 53

 54

11.3. Datamodel

We will now be discussing what structure we have come up with for the

database, using a data model.

11.4. General

As a font we’ll be using: Source Sans 3

And as a color schema we chose some colors that match the school:

- Text: #130E01 (black)

- Background: #FFFFFF (white)

- Accent: #CF4307

- Primary: #FF8400

- Secondary: #FFF5D6 (light yellow-ish)

https://fonts.google.com/specimen/Source+Sans+3?query=Source+Sans+3

 55

12. References

Austin, D. D. (2023, October 30). Medium. Retrieved from Why Tailwind CSS Is

48% Better For Performance Than CSS-In-JS:

https://medium.com/coding-at-dawn/why-tailwind-css-is-48-better-for-

performance-than-css-in-js-

93c3f9fd59b1#:~:text=It's%20an%20undeniable%20fact%20that,Block

%2DElement%2DModifier).

Chaudhari, M. (2023, July 4). Why should you use TypeScript for Next.js?

Retrieved from Medium: https://mayank1513.medium.com/why-should-

you-use-typescript-for-next-js-7f0698ed8b2

kmitl. (n.d.). about kmitl. Retrieved from kmitl: https://www.kmitl.ac.th/

Osnat, R. (2020, 12 23). Kubernetes Security Basics and 10 Essential Best

Practices. Retrieved from Cloud native academy:

https://www.aquasec.com/cloud-native-academy/kubernetes-in-

production/kubernetes-security-best-practices-10-steps-to-securing-k8s/

Rauch, G. (n.d.). The easiest way to work. Retrieved from Prisma.io:

https://www.prisma.io/nextjs

Salman. (2023, October 25). Innovating with Next.js: JavaScript vs. TypeScript

— A Developer’s Guide. Retrieved from Medium:

https://medium.com/@salluarsh/whether-to-use-javascript-or-typescript-

to-build-next-js-

af6f8b7ad4f3#:~:text=I%20personally%20recommend%20using%20Type

Script,maintainable%20and%20bug%2Dfree%20code.

Vulnerability Scanning Tools. (n.d.). Retrieved from owasp:

https://owasp.org/www-community/Vulnerability_Scanning_Tools

